پیش بینی بار معلق رودخانه با استفاده از مدل های سری زمانی و شبکه عصبی مصنوعی (مطالعه موردی: ایستگاه قزاقلی رودخانه گرگانرود)
Authors
abstract
برآورد میزان دقیق رسوبات معلق در رودخانه ها از ابعاد مختلف کشاورزی، حفاظت خاک، کشتیرانی، سدسازی، حیات آبزیان و ابعاد تحقیقاتی، دارای اهمیت فراوانی است. روش های مختلفی برای بررسی و برآورد رسوبات معلق رودخانه، موجود می باشد که البته توانایی این روش ها متفاوت است. در تحقیق حاضر به منظور مقایسه و بررسی توانایی مدل های سری زمانی شامل مارکف، arima و شبکه های عصبی در پیشبینی رسوب معلق، از داده های روزانه ایستگاه قزاقلی واقع روی رودخانه گرگانرود استفاده شده است. داده های موجود به صورت متوسط رسوب معلق ماهانه در محیط نرمافزار minitab 16 وneurosolutions 5 به کار گرفته شد و در نهایت پیشبینی رسوب برای 111 ماه انجام گرفت. در مرحله بعد، مقادیر پیش بینی شده توسط مدل های مختلف، با شاخص های اندازه گیری خطا شامل rmseوnmse نشان داد که شبکه های عصبی در مقایسه با مدل های سری زمانی توانایی بهتری در پیش بینی و مدل سازی رسوب ماهانه دارد و نیز در بین مدل های سری زمانی، مدل مارکف در مقایسه با مدل arima دارای توانایی بهتری در برآورد رسوب معلق می باشد.
similar resources
پیش بینی بار معلق رودخانه با استفاده از مدلهای سری زمانی و شبکه عصبی مصنوعی (مطالعه موردی: ایستگاه قزاقلی رودخانه گرگانرود)
Accurate estimation of suspended sediment in rivers is very important from different aspects including agriculture, soil conservation, shipping, dam construction and aquatic research. There are different methods for suspended sediment estimation. In the present study to evaluate the ability of time-series models including Markov and ARIMA in predicting suspended sediment and to compare their re...
full textپیشبینی بار معلق رودخانه با استفاده از مدلهای سری زمانی و منحنی سنجه اصلاح شده (مطالعه موردی: ایستگاه قزاقلی رودخانه گرگانرود)
برآورد میزان رسوبات معلق در رودخانهها از ابعاد مختلف کشاورزی، حفاظت خاک، کشتیرانی، سد سازی، حیات آبزیان و همچنین جنبههای مختلف تحقیقاتی دارای اهمیت فراوانی است. روشهای مختلفی برای بررسی و برآورد بار معلق رودخانهها وجود دارد که توانایی این روشها در برآورد رسوبات متفاوت است. یکی از پرکاربردترین روشها در این زمینه، منحنی سنجه رسوب میباشد. روشهای نوظهوری مانند سریهای زمانی نیز وجود دارد ک...
full textپیش بینی رسوب معلق با استفاده از مدل سری زمانی تابع انتقال در ایستگاه های منتخب رودخانه گرگانرود، استان گلستان
full text
بررسی کارایی شبکه عصبی مصنوعی در برآورد بار معلق رودخانه با استفاده از داده های دستهبندیشده
بار رسوب جریان، شاخص مفیدی در پیشبینی فرسایش خاک در حوزههای آبخیز است؛ بنابراین تدوین مدلی برای برآورد بار رسوب میتواند در مدیریت و اجرای پروژههای آبخیزداری و مهندسی رودخانه مفید باشد. در این پژوهش روش دستهبندی دادهها بهعنوان راهکاری برای افزایش دقت شبکه عصبی مصنوعی در تدوین مدل برآورد رسوب معلق بررسی شد. بدین منظور، میزان آورد رسوبات معلق رودخانههای خلیفهترخان و چهلگزی در حوضۀ قشلاق...
full textپیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)
پیشبینی دقیق جریان در رودخانهها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالیها است. به دلیل اهمیت پیشبینی جریان رودخانه، در این تحقیق جریان روزانه رودخانهی باراندوزچای در دو ایستگاه بیبکران و دیزج طی یک دورهی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) میباشد، پیشبینی گرد...
full textپیش بینی جریان ماهانه رودخانه با استفاده از ترکیب مدل های خطی سری زمانی و شبکه های بیزین (مطالعه موردی: رودخانه بختیاری)
یکی از مسائل مهم در مدیریت منابع آب، تهیه و توسعه مدلهای مناسب به منظور پیشبینی دقیقتر فرآیند جریان رودخانهها می-باشد. بدین منظور در مطالعه حاضر برای پیشبینی جریان ماهانه رودخانه بختیاری، در دوره آماری 1395-1334، از مدلهای سری-زمانی خطی (ARMA)، مدل هوشمند شبکه بیزین (BN) و مدل تلفیقی BN-ARMA استفاده شد. عملکرد مدلهای توسعه یافته براساس شاخصهای آماری جذر میانگین مربعات خطا (RMSE)، ضریب ...
full textMy Resources
Save resource for easier access later
Journal title:
پژوهشنامه مدیریت حوزه آبخیزجلد ۶، شماره ۱۲، صفحات ۲۱۶-۲۲۵
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023